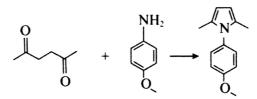
义乌市普通高中 2025 届适应性考试

化 学

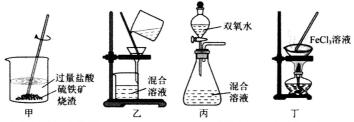
说明:

- 1. 全卷满分 100 分, 考试试卷 90 分钟;
- 2. 请将答案写在答题卷的相应位置上;
- 3. 相对原子质量: H-1; B-11; C-12; N-14; O-16; F-19; Na-23; Si-28; S-32; Cl-35.5; Cu-64
- 一、选择题(本大题共16题,每小题3分,共48分。每小题列出的四个备选项中只有一个 是符合题目要求的, 不选、多选、错选均不得分)
- 1. 下列物质属于非极性分子的是
 - A. O₃
- B. H₂O₂
- C. NH_3 D. C_2H_4


- 2. 下列说法不正确的是
 - A. 石墨烯与金刚石互为同素异形体

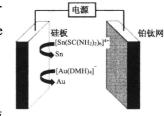
- C. 丙烯酸的结构简式: CH₂=CHCOOH
- D. 用电子式表示 Cl₂ 的形成过程: :Ċi·+·Ċi: → :Ċi:Ċi:
- 3. 化学与人类社会可持续发展息息相关,下列说法不正确的是
 - A. 硫酸亚铁、硫酸铝、聚合氯化铝,均可除去污水中的悬浮物
 - B. 煤的干馏是煤在空气中加强热得到焦炉气、煤焦油等产物的过程
 - C. 硫酸钙能使豆浆中的蛋白质聚沉,可用作豆腐的凝固剂
 - D. 柳树皮中的水杨酸可与乙酸酐合成药物乙酰水杨酸(阿司匹林)
- 4. 根据元素周期律,下列说法不正确的是
 - A. 电负性: N>O>C

- B. 分子的热稳定性: HF>HCl
- C. 酸性: CH₃COOH<CF₃COOH
- D. 化学键中离子键成分的百分数: Na₂O>MgO
- 5. 下列有关实验安全和仪器使用,说法不正确的是
 - A. 萃取过程中,振荡时应打开上口玻璃塞放气
 - B. 皮肤溅上碱液, 先用大量水冲洗, 再用 1%的硼酸溶液冲洗
 - C. 金属 K 燃烧起火,用灭火毯(石棉布)灭火
 - D. 不慎误服重金属盐溶液,可立即大量食用蛋清或牛奶解毒
- 6. 关于硫及其化合物的性质 (N_A 为阿伏伽德罗常数的值), 下列说法正确的是
 - A. 单质硫与铜反应可以得到硫化铜
 - B. Na₂S 可被 SO₂ 氧化成 S 单质, 体现 SO₂ 的还原性
 - C. 50 mL 18 mol·L-1 浓硫酸与足量铁加热反应, 转移电子数大于 0.9NA
 - D. 1 mol Na₂S₂O₃ 与足量稀 H₂SO₄ 充分反应,转移 4 mol 电子
- 7. 下列说法不正确的是
 - A. 二氧化硅小颗粒质地坚硬、难溶于水,可用作牙膏中的摩擦剂
 - B. 表面活性剂一端极性强、另一端极性弱,可用于清除衣服上的油渍
 - C. 可通过 X 射线衍射获得包括键长 、键角、键能等分子结构信息
 - D. 聚乳酸易降解且可被人体吸收,可用于手术缝合线


- 8. 下列反应方程式不正确的是
 - A. 用 FeS 除去工业废水中的 Pb2+: Pb2++S2-=PbS1
 - B. 乙醇与酸性 K₂Cr₂O₇溶液反应: 3CH₃CH₂OH+2Cr₂O₇²⁻+16H⁺=3CH₃COOH+4Cr³⁺+11H₂O
 - C. 酸性条件下 NO_3^- 电催化为 N_2 的阴极反应: $2NO_3^- + 12H^+ + 10e^- = N_3^- + 6H_3O_3^-$
 - D. 过量 SO₂与 CuCl₂溶液反应: SO₂+2CuCl₂+2H₂O =2CuCl ↓+H₂SO₄+2HCl
- 9. 吡咯类化合物在导电聚合物、化学传感器及药物制剂上有着广泛应用。一种合成 1-(4-甲氧基苯基)-2,5-二甲基吡咯(用吡咯 X 表示)的反应和方法如下:

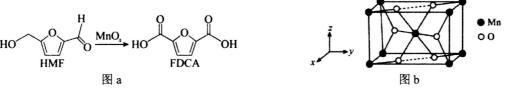
己-2、5-二酮 4-甲氧基苯胺 吡咯X

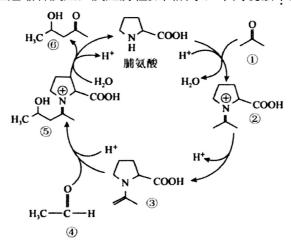
下列说法不正确的是


- A. 该反应过程涉及加成反应和消去反应
- B. 己-2.5-二酮是丙酮的同系物,可发生还原反应
- C. 吡咯 X 分子中有 5 种不同化学环境的氢原子
- D. 4-甲氧基苯胺具有碱性,可与盐酸发生反应,生成可溶性盐
- 10. 实验室由硫铁矿烧渣(含 FeO、 Fe_2O_3 、 SiO_2 等)制取无水氯化铁的实验原理和装置不能达到实验目的的是

- A. 用装置甲溶解硫铁矿烧渣
- B. 用装置乙过滤得到含 Fe²⁺、Fe³⁺混合溶液
- C. 用装置丙氧化得到 FeCl₃溶液
- D. 用装置丁蒸干溶液获得无水 FeCla
- 11. 电镀工艺中多种因素可能会影响电镀层的厚度和平整度,包括电镀时间、电流大小、是否产生气体等。某电镀工厂制备金锡合金,将电镀液中的 Sn²⁺改为 Sn⁴⁺,电镀过程中采

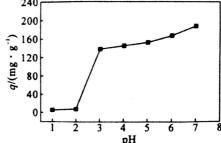
用硫脲 $SC(NH_2)_2$ 作为 Sn^{4+} 的络合剂、DMH-作为 Au^{3+} 的络合剂,以 Na_2SO_4 、NaCl 作为电镀液。已知 Sn 元素的性质与 Fe 元素性质相似,下列说法正确的是

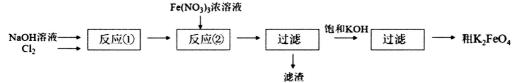

- A. 电路中转移 3mol 电子时硅板上析出 1molAu
- B. 在酸性环境中,得到的合金镀层平整度较好
- C. 电镀时电流路径为: 电源→铂钛网→电镀液→硅板→电源
- D. 将电镀液中 Sn²⁺改为 Sn⁴⁺原因可能是因为 Sn²⁺水解会产生絮状沉淀


义乌市普通高中 2025 届适应性考试·化学 第 2 页(共 8 页)

12. 磷的常见含氧酸化学式为 H_3PO_x (x=2、3、4),分子结构如下图所示。常温下 H_3PO_4 的 $K_{a1}=6.9\times10^{-3}$, $K_{a2}=6.2\times10^{-8}$, $K_{a3}=4.8\times10^{-13}$,CaHPO₄ 的 $K_{sp}=1\times10^{-9}$ 。下列说法正确的是

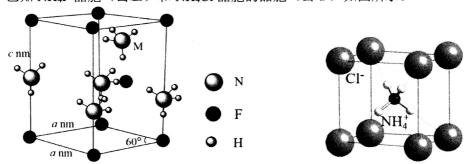
- A. H₃PO₃溶液与足量 NaOH 溶液反应的离子方程式: H₃PO₃+OH=H₂PO₃+H₂O
- B. NaH₂PO₂溶液中的离子存在以下关系: c(H⁺)-c(OH⁻)=c(H₂PO₂⁻)+2c(HPO₂²⁻)+3c(PO₂³⁻)-c(Na⁺)
- C. 向 H₃PO₄ 溶液中加入 NaOH 溶液, 当溶液的 pH=11 时, c(PO₄³⁻)<c(HPO₄²⁻)
- D. 向 0.002mol/L 的 NaH₂PO₄ 溶液中加入等体积 0.002mol/L 的 CaCl₂ 溶液无沉淀生成
- 13. MnO_x 可作 HMF 转化为 FDCA 的催化剂 (见下图 a), MnO_x 的四方晶胞如图 b 所示,下列说法不正确的是


- A. 氧化物 MnOx 化学式为 MnO2
- B. MnO_x 的晶胞在 xy 平面的投影图为
- C. 当 MnOx 晶体有 O 原子脱出时,出现 O 空位, Mn 的化合价升高
- D. FDCA 的熔点远大于HMF,除相对质量存在差异外,可能由于FDCA 形成的分子间氢键更多14. 脯氨酸可以催化羟醛缩合反应,反应历程如图所示,下列说法不正确的是


- A. 总反应的原子利用率为 100%
- B. 含有手性碳原子的有机物共有6种
- C. 反应中存在极性键和非极性键的断裂和生成
- D. 原料用丙醛和苯甲醛的产物为 CHC

义乌市普通高中 2025 届适应性考试·化学 第 3 页(共 8 页)

医化咖纳木材料表面的 B-OH 和 B-NH₂ 都有吸附 Cd^{2+} 的性质,单位质量的氮化硼纳米材料吸附 Cd^{2+} 的平衡吸附量 q与 pH 的关系如图,下列说法不正确的是



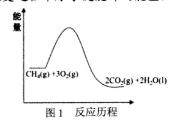
- A. B-NH₂+Cd²⁺ → (B-NH₂ Cd)²⁺过程有新化学键形成
- B. pH<3, B-NH₂+H⁺ → B-NH₃⁺, 导致 q 减小
- C. pH>3 对 Cd²⁺吸附能力较大的是 B-NH₂
- D. 氮化硼纳米材料具有良好的导电性和导热性
- 16. 某研究小组模拟工业湿法制备高铁酸钾,并用以下试剂(NaCl、淀粉、稀硫酸、KI、Na₂S₂O₃)测定粗品高铁酸钾的纯度,制备过程如图所示。


已知: K₂FeO₄ 易溶于水,微溶于 KOH, 难溶于乙醇,有强氧化性,在 0—5℃碱性溶液中稳定存在。下列说法正确的是

- A. 反应①需要冰水浴,主要目的是防止反应速率过快
- B. 用相同浓度的 FeCl₃溶液代替 Fe(NO₃)₃溶液,产品的纯度和产率可能会下降
- C. 加入饱和 KOH 主要是为了防止 K_2 FeO₄ 在酸性或中性条件下分解
- D. 已知 I_2 和 I-会形成 I_3 -,因此仅用上述试剂无法通过滴定法准确测定高铁酸钾的纯度 二、**非选择题**(本大题共 4 题,共 52 分)
- 17. (14分)短周期元素在生产生活中有着广泛的应用,请回答:
- (1) 比较 B、C、Li 的第一电离能____ (从大到小)。
- (2) 关于短周期元素相关的结构与性质,下列说法不正确的是___。
 - A. OF₂的熔、沸点低于 Cl₂O
 - B. SOCl₂中的 S 原子杂化类型为 sp²
 - C. 碱性: NH₃>N₂H₄>NH₂OH
 - D. PCl₅在熔融时的阴离子是[PCl₆],则 PBr₅在熔融时的阴离子是[PBr₆]
- (3) 已知 NH₄F 晶胞(图左)和 NH₄Cl 晶胞的晶胞(图右)如图所示。

- ①两个晶胞中 NH_4 +的配位数之比是 \triangle __。
- ②已知 NH₄F 的密度为 1.11g/cm³, NH₄Cl 的密度为 1.53g/cm³, 请从结构的角度解释 NH₄F 密度小的原因 ▲ 。

(4) 氰化法提金是生产单质金(Au)的重要方法,其工艺流程如下:


- ①金矿石中金砂常被黄铁矿(FeS₂)包裹共生,请分析硝酸酸浸过程中通入 O_2 的作用: ______ ; 写出操作 I 需要的玻璃仪器有_____。
- ②CN-可与 Au+生成稳定的[Au(CN)₂] 配离子,请写出虚线框内氰化法浸出金的离子方程式____。
- 18. (14 分) 硅烷类化合物在电子行业中有广泛的应用。Si 与 H 可形成与有机烷烃相似的硅烷类化合物(Si_nH_{2n+2})。碳和硅的有关化学键键能如下所示:

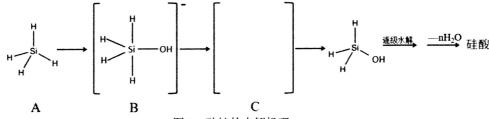
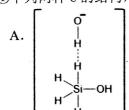
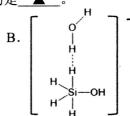
化学键	Н—Н	С—Н	С—О	Si—H	Si—O	Si—Si
键能/(kJ/mol ⁻¹)	436	413	351	a	460	226

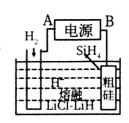
(1) ①己知: Si(s)+2H₂(g)=SiH₄(g) ΔH₁=+34 kJ/mol

试计算 Si—H 的键能 a=___kJ/mol (忽略晶体 Si 状态改变过程中除了键能外的能量)

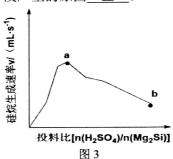
②已知 " $CH_4(g)+3O_2(g)=2CO_2(g)+2H_2O(l)$ " 反应历程图如图 1 所示,请在图 1 中画出 $SiH_4(g)+3O_2(g)=2SiO_2(s)+2H_2O(l)$ 的反应历程曲线 _ ___ 。

- (2) 用特定激光器对 SiH₄进行辐射, SiH₄可以选择性转化为 Si₂H₆和 H₂,实验测得反应过程生成 SiH₃·自由基。写出该 过程涉及的所有基元反应的化学方程式 ______。
- (3) 研究表明硅烷的水解机理主要是通过 OH^- 进攻 Si 原子($A\rightarrow B$),同时利用分子间的双氢键($H\cdots H$)($B\rightarrow C$)并产生 H_2 ,最终 Si-OH 之间脱水形成 Si-O-Si 网络结构,如图 2 所示。


图 2 硅烷的水解机理

①下列两种 C 的结构, 更符合该反应机理的是 ▲



- ②实验发现,碱性条件下硅酸缩聚速率加快,请参考上述反应机理解释原因____。
- (4) 熔融盐电解法制取甲硅烷(SiH₄)原理如右图。 阳极的电极反应式为 ▲__。

- (5) 甲硅烷还可以使用金属硅化物如 Mg₂Si (s)
 - 与酸进行制备: Mg₂Si+2H₂SO₄=2MgSO₄+SiH₄↑


实验测得反应开始时生成甲硅烷的速率 v 与投料比[$n(H_2SO_4)/n(Mg_2Si)$]之间的关系,结果如图 3 所示,请解释 ab 段产生的原因 \triangle __。

19. (12 分)实验室用对氨基苯磺酸和亚硝酸钠 1:1 反应制备甲基橙,其流程和装置图如下 所示:

已知:甲基橙难溶于乙醚,不溶于乙醇,微溶于冷水,易溶于热水;NaNO₂酸性条件下氧化性较强;重氮盐不能氧化碘离子,但在5℃以上易水解为酚。请回答:

- (1)步骤②中,使用恒压滴液漏斗滴加浓盐酸,与用一般 分液漏斗相比的优点有: __▲__。
- (2)下列有关实验的说法正确的是_▲_。
 - A. 对氨基苯磺酸为两性化合物,酸性强于碱性
 - B. 步骤②使用冰盐浴的目的是防止重氮盐水解
 - C. 为了判断步骤②中重氮化反应的进行程度,取少量反应后的溶液,用淀粉碘化钾溶液检验
 - D. 步骤④直接使用冰水浴冷却可以得到颗粒更大的 甲基橙晶体

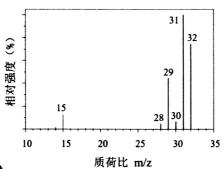
(3) 随着反应的进行,体系颜色的变化为"无色→③中_▲_色→④中_▲_色"。

义乌市普通高中 2025 届适应性考试·化学 第6页(共8页)

- (4) 步骤④过滤得到的为甲基橙粗品,需重结晶进一步提纯,请从下列选项中选择合适的操作排序:
 - $_$ ▲ →加适量活性炭,搅拌 → $_$ → $_$ → $_$ → $_$ → $_$ → 用少量乙醚洗涤 →得到甲基橙晶体。
 - A. 将样品用适量热水溶解
- B. 将样品用适量乙醇溶解

C. 冷却结晶

- D. 蒸发结晶
- E. 用少量冷水洗涤
- F. 用少量热水洗涤


G. 过滤

- H. 趁热过滤
- (5) 若最终得到甲基橙晶体 3.597g,则产率为_____;(结果保留两位小数)
- (6)已知甲基橙存在顺反异构体,实验获得的主要是反式结构,请解释可能的原因: ▲
- 20. (12 分) 化合物 H 是一种共价有机框架材料的配体,在照明设备、催化等应用中有光明 前景。某研究小组按以下路线合成:

- (1) 写出 A 中含氧官能团的名称 ▲ 。
- (2) 下列说法不正确的是____。
 - A. B 转化成 C 的过程是为了保护醛基, 防止其被氧化
 - B. C 转化为 D 是一个加成反应
 - C. G的分子式是 C₁₅H₁₁O₃SN
 - D. F 可以使酸性高锰酸钾溶液褪色

义乌市普通高中 2025 届适应性考试·化学 第7页(共8页)

(3) 研究小组发现中间体 L 转化成 H 过程中,还生成了另一种产物,其质谱如下图,该产物的结构简式 \triangle ;写出化合物 L 的结构简式 \triangle 。

- (4) B→C 的化学方程式____。
- (5) 部分物质的 pKa 值,如下表:

物质	CH₃CH₂SH	SH	OH	CH₃CH₂OH	CH ₂ =CHSH	NaHCO ₃
pKa	≈10.5	≈6.5	≈10.0	≈19.9	≈8.3	≈10.3

实验中发现B较容易被氧化成化合物K(

列条件的 K 的同分异构体的结构简式 ▲ 。(不考虑立体异构)

- ①有苯环结构,不含其他环;
- ②核磁共振氢谱表明:分子中有3种不同化学环境的氢原子;
- ③常温下, 1mol 该物质最多可以和 5mol Na₂CO₃ 反应。

(6)结合图中所给信息,设计以1,3,5-三甲苯、

为原料,合成下图中新型共价