义乌市普通高中 2025 届适应性考试

数学

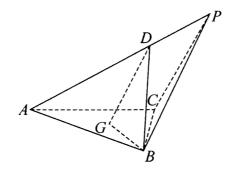
木设长公济择颗和非济择颗两部分 老设时间 120 公钟 设发台公为 150 公 请老生坛

规定用笔将所有试题的答案涂、写在答题纸上.				
选择题部分(共 58 分)				
一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.				
1.	已知集合 $A=\{x -6 < x^2 <$	(6), 集合 B={-3,-1,0,	2,3}, 则 <i>A</i> ∩ <i>B</i> = (▲)
2.	A. {-1, 0} 若复数 <i>z</i> 满足 <i>z</i> (1-i)=(1-	B. {0,2} +i), 其中 i 是虚数单位;		D. {-3, -1, 0}
	A. i	Ві		D. 1-i
3.	已知 $ \vec{a} =1$, $ \vec{a}+\vec{b} =\sqrt{5}$,向量 \vec{a} 与 \vec{b} 的夹角为	$J\frac{\pi}{4}$,则 $\left \vec{b}\right $ =(△)	
	A. 1	B. $\sqrt{2}$	C. $\sqrt{3}$	D. $2\sqrt{2}$
4.	将一个棱长为 6cm 的正零件的高约为(▲)	方体铁块熔铸成一个底	面半径为 3cm 的圆锥位	本零件,则该圆锥体
	A. 8cm	B. 12cm	C. 16cm	D. 24cm
5.	已知函数 $f(x)=a\sqrt{x}-\ln x$	在区间(1,4)上单调递均	曾,则实数 a 的最小值之	为(▲)
	A. 1	B. 2	C. 3	D. 4
6.	在 $\triangle ABC$ 中,角 A 、 B 、	C 所对的边分别为 a 、	b、c,已知 A=30°,a=	=√2 , <i>b</i> =2,则下列
	结论一定正确的是(
_		B. <i>B</i> >90°		
7.	已知过抛物线 $y^2=2px(p)$ p 的最大值为 (\blacktriangle)	>0)焦点 F 的直线与该 i	她物线交士 A , B 两点,	若 <i>AF</i> +4 <i>BF</i> =9,则
	A. 2	B. 3	C. 4	D. 6
8.	狄利克雷函数 D(x)定义	为: $D(x)=egin{cases} 1 \ , \ x$ 为有理 $0 \ , \ x$ 为无理	数 , 以下选项中正确的 数	7是(▲)。
A. 不存在 $a \in R$,使得 $D(a+x)=D(a-x)$ 恒成立 B. 存在 $a \in R$,使得 $D(a+x)+D(a-x)=1$ 恒成立				

义乌市普通高中 2025 届适应性考试·数学 第1页(共4页)

C. 对任意 x_1 , x_2 , 满足 $D(x_1)(x_2)=D(x_1+x_2)$

D. 函数图像上存在三点 A, B, C, 使得 $\triangle ABC$ 是直角三角形


- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9. 有两组数据,数据 A: 1,3,5,7,9 和数据 B: 1,2,4,8,16,则(▲)
 - A. 数据 A 的平均数小于数据 B 的平均数
 - B. 数据 A 的方差小于数据 B 的方差
 - C. 数据 A 的极差小于数据 B 的极差
 - D. 数据 A 的中位数小于数据 B 的中位数
- 10. 设函数 $f(x)=x(x-a)^2$, $a\neq 0$, 则(\triangle)
 - A. 当 a=3 时, f(x)有极大值 4
 - B. 当 a=3 时, $f(x+3) \ge f(x)$
 - C. 当 a > 1 时, $f(a^2+a) > f(2a+1)$
 - D. 当 a < -1 时, $f(a^2+a) > f(2a+1)$
- 11. 在平面直角坐标系 Oxy 中,动点 P 在直线 I: y=x 上的射影为点 Q,且|OP|+|PQ|=1,记动点 P 的轨迹为曲线 C,则下列结论正确的是(\triangle)
 - A. 曲线 C 关于原点 O 对称
 - B. 点 Q 的轨迹长度为 1
 - C. $\frac{1}{2} \leq |OP| \leq 1$
 - D. 曲线 C 围成的封闭区域的面积小于 2

非选择题部分(共92分)

- 三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分.
- 12. 已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_5=S_5=5$, 则公差 d=______.

13. 若
$$\tan\theta=2$$
, 则 $\frac{\cos\theta(1-\sin2\theta)}{\sin(\theta-\frac{\pi}{4})}=$ ______.

- 四、解答题: 本题共 5 小题, 共 77 分. 解答应写出文字说明、证明过程或演算步骤.
- 15. 某手机厂对屏幕进行两项独立检测: 亮度检测通过率 $\frac{7}{8}$, 色准检测通过率 $\frac{4}{5}$. 产品需通过两项检测才算合格. 随机抽取 3 件产品,设合格品数为 X.
 - (1) 求单件产品为合格品的概率;
 - (2) 求 X 的分布列及数学期望;
 - (3) 已知合格品利润 100 元/件,若改进工艺能使亮度检测通过率提升至 $\frac{9}{10}$,但每件成本增加 1 元.是否值得改进?
- 16. 双曲线 C: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为 $\sqrt{3}$, 过左焦点 F 的直线 l 与双曲线的左支、右支分别交于点 A、B,当直线 l 与 y 轴垂直时, $|AB|=2\sqrt{3}$.
 - (1) 求双曲线 C 的方程;
 - (2) 点 C(12,0)满足 CB // OA, 其中 O 是坐标原点, 求四边形 ABCD 的面积.
- 17. 如图,在三棱锥 P-ABC 中, $\triangle ABC$ 是正三角形,AC=PC, $\angle ACP$ =120°, \overrightarrow{AD} = $2\overrightarrow{DP}$,点 G 为 $\triangle ABC$ 的重心.
 - (1) 证明: GD//平面 PBC;
 - (2) 若平面 $BGD \perp$ 平面 PAC, 求二面角 P-AB-C 的平面角的正切值.

- 18. 己知函数 $f(x)=x-a\ln(1+x)$, $a \in R$.
 - (1) 当 a=1 时,求 f(x)的极值;
 - (2) 若 f(x)在区间(-1,0)上存在零点 x₀,
 - (i) 求 a 的取值范围;
 - (ii) 证明: 当-1 < x < 0时, $f(x) > f'(x_0)$.
- 19. 给定正整数 $n \ge 3$,考虑集合 $\{1, 2, ..., n\}$ 的所有排列 $\pi=(a_1, a_2, ..., a_n)$,对每个 $1 \le i \le n-1$, $i \in \mathbb{N}^*$,定义: $d_i=\min\{|a_i-a_j|, j=i+1, i+2, i+3, \cdots, n\}$,并规定 $d_n=0$. 记 S_m 为所有排列中 $\sum_{i=1}^m d_i$ 的最大值.
 - (1) 对于排列 π =(1, 3, 2, 4), 计算 $\sum_{i=1}^{4} d_i$, 再直接写出 S_3 和 S_4 的值;
 - (2) 对任意整数 $k \ge 3$, 证明: $S_{2k} \ge k-1+S_k+S_{k+1}$;
 - (3) 证明: S₂₀₄₉≥13312.