2024年11月绍兴市选考科目诊断性考试 数学参考答案及评分标准

一 、选择题:本题共8小题,每小题5分,共40分。	
1. A 2. B 3.B 4.C 5.D 6.C 7.C 8.B	
二、选择题:本题共3小题,每小题6分,共18分。	
9.BC 10.ACD 11.ABC	
三 、填空题:本题共3小题,每小题5分,共15分。	
12.60 13. $\pm \sqrt{2}$ 14. $\frac{19}{81}$	
四 、解答题:本题共5小题,共77分。	
15. (13分)解:	
(1)因为 √3bsinA=a(cosB+1),	
所以 √3sin BsinA=sin A(cosB+1).	·······2分
又因为 $\sin A > 0$,即 $\sqrt{3} \sin B - \cos B = 1$,即 $\sin (B - \frac{\pi}{6}) = \frac{1}{2}$.	·······4分
又因为 $-\frac{\pi}{6} < B - \frac{\pi}{6} < \frac{5\pi}{6}$,所以 $B - \frac{\pi}{6} = \frac{\pi}{6}$,即 $B = \frac{\pi}{3}$.	6分
(2) 在△BCD 中,由余弦定理 $\cos B = \frac{BD^2 + BC^2 - CD^2}{2BC \cdot BD} = \frac{1}{2}$,	8分
可得BD ² -2BD-8=0, 解 得BD=4, 即 c=8.	······10分
在 \triangle ABC中,由余弦定理可知 $b^2=a^2+c^2-2ac$ cosB=52.	•••••11分
解得b=2√13.	·······13分
16. (15分)解:	
(1) 因为 $f(x) = e^{*}-2x-1$, 所以 $f'(x) = e^{*}-2$,	·······2分
所以当x <in2时,f(x)<0, 当x="">In2时,f(x)>0</in2时,f(x)<0,>	
所以f(x) 在(0, In2)上递减,在[In 2,1]上递增.	4分
因为f(0)=0,f(1)=e-3,f(In2)=1-2In2, 且 e-3<0,	
昕以f(v)的值量是[1-9In2_0]	·····7分

数学答案 第1页(共6页)

(2) 因为f(x)=e*-a. … … 9分 ①若 $a \le 1$, 当x > 0 时 ,f(x) > 0, 所 以 f(x) 在 (0.+) 上递增, 所以f(x)>f(0)=0, 不符合题意. ·········11分 ② 若a>1, 当 x<Ina 时,f'(x)<0; 当 x>Ina 时,f'(x)>0, 所以f(x) 在(0, Ina)上递减,在(ln a,+)上递增, ……13分 要存在xo>1, 当 x \in (0,x₀),f(x)<0, 则只需f(1)=e-a-1<0, 所 以a>c-1. ······15分 17. (15分)解: (1)取AD 中点E, 连接PE,BE, 因 为AB=AD=2√3,∠BAD=60°, 所 以 △ABD 是正三角形,因为E 为AD 中点, 所 以AD_BE.2分 又因为BC²+PB²=(2 √3)²+(2 √6)²=36=PC², 所以PBIBC. 因为BC//AD, 所以AD_PB.5分 又BE∩PB=B, 所以AD1 面PBE. 所以 $AD \perp PE$, 又因为E为AD中点, 所以PA=PD.6分 解 法 1:(2) 因 为ADIBE,AD \perp PE, 的平面角,即 $\cos \angle PEB = -\frac{1}{3}$. 所以∠PEB 是二面角P-AD-B 在△PEB 中,由余弦定理 $\cos \angle PEB = \frac{BE^2 + PE^2 - PB^2}{2BE \cdot PE} = \frac{9 + PE^2 - 16}{6 \cdot PE} = -\frac{1}{3}$ 解 得PE=3.9分 如图,以点E为坐标原点,EA,EB 分别为x,y 轴建立空间直角坐标系, 则A(J3.0.0),B(0,3.0),C($-2\sqrt{3}$,3.0), $P(0,-1.2\sqrt{2}),$ 所以BC=(-2 √3.0.0), AB=(- √3, 3.0), $PA = (\sqrt{3}, 1, -2\sqrt{2}),$

设平面ABP的一个法向量为m=(x,y,z),

所以
$$|\cos \langle m, \overline{BC} \rangle| = |\frac{m \cdot \overline{BC}}{|m||\overline{BC}|}| = |\frac{-6}{2\sqrt{3} \times \sqrt{6}}| = \frac{\sqrt{2}}{2}$$

所以直线BC 与平面PAB 所成角的正弦值为 $\frac{\sqrt{2}}{2}$ 15分

解 法 2: (2) 因 为 $AD \perp BE$, $AD \perp PE$,

所以
$$\angle$$
PEB 是二面角P-AD-B 的平面角,即 $\cos \angle PEB = -\frac{1}{3}$ … … 8 分在 \triangle PEB 中, $\cos \angle PEB = \frac{BE^2 + PE^2 - PB^2}{2BE \cdot PE} = \frac{9 + PE^2 - 16}{6 \cdot PE} = -\frac{1}{3}$ 解得PE=3,

-----9分

所以AP=2 √3, 所以PA=AB, 且 PA² +AB² =PB², 取 PB 中 点F, 连 接AF,DF,

在等腰直角三角形PAB 中 , $AF=\sqrt{6}$, 同 理 $DF=\sqrt{6}$,

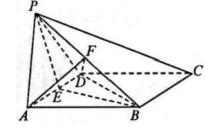
……11分

所以 $AF^2+DF^2=AD^2$, 所以 $DF\perp AF$, 又 $DF\perp PB$, 所以 $DF\perp$ 平面PAB,

所以 ZDAF 即为直线AD与平面PAB 所成角,

$$\nabla \sin \angle DAF = \frac{\sqrt{2}}{2} \quad \overrightarrow{fit} AD//BC,$$

所以直线BC 与平面PAB 所成角的正弦值为 $\frac{\sqrt{2}}{2}$.



----15分

18. (17分)解:

(2)(i) 设直线AB 的方程为x=my-1, 联立
$$\begin{cases} x = my - 1 \\ \frac{x^2}{4} + \frac{y^2}{3} = 1 \end{cases}$$
 得 $(3m^2 + 4)y^2 - 6my - 9 = 0$, 数学答案 第3页(共6页)

设A(x,y),B(x₂,y₂),P(x,y₁), 则
$$y_1 + y_2 = \frac{6m}{3m^2 + 4}$$
 $y_1y_2 = \frac{-9}{3m^2 + 4}$ 6分

因为△PAB的重心为原点,所以y₁+y₂+y_,=0,

所以
$$y_3 = \frac{-6m}{3m^2+4}$$
,又 $x_3 = -(x_1 + x_2) = -m(y_1 + y_2) + 2 = \frac{8}{3m^2+4}$,

.....8分

代入
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
,可得 $\frac{12m^2 + 16}{(3m^2 + 4)^2} = 1$,

解得m=0, 所以直线AB的方程是x=-1.

······10分

解法1: (ii) 设 G(t,0), 由 (i) 可 知
$$y_3 = \frac{-6m}{3m^2+4}, X_2 = 3(-(x+X)=3(+3m^8+4 \cdots 12))$$

代入
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
,可 得 $\frac{(3t + \frac{8}{3m^2 + 4})^2}{4} + \frac{12m^2}{(3m^2 + 4)^2} = 1$

所以(3t+4)t(3t+2)(3t-2) ≤ 0 , 且 $t \neq \pm \frac{2}{3}$,

所以
$$t \in [-\frac{4}{3}, -\frac{2}{3}] \cup [0, \frac{2}{3}]$$
17分

解法2:(ii) 设 G(t,0), 由 (i) 可知
$$y_3 = \frac{-6m}{3m^2 + 4}$$
, $x = 30 - (x + x) = 3 + 3m^3 + \dots 12$

代》入
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
,可得 $\frac{(3t + \frac{8}{3m^2 + 4})^2}{4} + \frac{12m^2}{(3m^2 + 4)^2} = 1$,

① 当t ① 时,
$$t = -\frac{2}{3} \times \frac{\sqrt{9m^4 + 12m^2 + 16} + 4}{3m^2 + 4}$$
 $\Leftrightarrow u = 3m^2 + 4 \ge 4$

则
$$t = -\frac{2}{3} \times \frac{\sqrt{u^2 - 4u + 16} + 4}{u}$$
在 $(4, +0)$ 上递增,所以 $t \in [-\frac{4}{3}, -\frac{2}{3})$15分

② 当t
$$\geqslant 0$$
时, $t = \frac{2}{3} \times \frac{\sqrt{9m^4 + 12m^2 + 16} - 4}{3m^2 + 4}$ $\Rightarrow u = 3m^2 + 4 \ge 4$

综上可知
$$I \in [-\frac{4}{3}, -\frac{2}{3}] \cup [0, \frac{2}{3}]$$

19. (17分)解:

$$(1)D(m2) = \{(1,0)\}, D(m3) = \{(1,0.0), (1,0,1), (1,1,1)\}.$$
4

(2)(i) 设D(m,) 中元素的个数为a, 由于f(m)=1+x₁+x₁X₂+...+x₁x₂...x, 为偶数,

$$f(m_1)=1+x(1+x_2+X_2X_3+...+X_2...xn)$$
, 则 $x=1$, 且 $a_1=2$ "-1-an-1· ············· 7分

$$=2$$
"- $^{1}-2$ n- $^{2}+2$ n- $^{3}-2$ "+...+ (-1) "- $^{3}.2$ 2+ (-1) "- $^{2}.2$ + (-1) "- $^{1}.1$

$$=\frac{(-1)^{n-1}\cdot[1-(-2)^n]}{1-(-2)}=\frac{2^n+(-1)^{n+1}}{3}$$

$$\mathbb{P} a_n = \frac{2^n + (-1)^{n+1}}{3} \, .$$

故D(m,) 中元素的个数为
$$\frac{2^n + (-1)^{n+1}}{3}$$
.10分

 $m \times 1: (ii)$ 令 *-- $\sum_{\mathbf{x} \in \mathbf{x}_{-1}} D(\mathbf{m}_{\mathbf{x}})$ 表示使得 $f(\mathbf{m}_{\mathbf{x}})$ 为偶数的所有 $\mathbf{m}_{\mathbf{x}}$ 的集合,

当n=2k 时,

 $1) \stackrel{\text{def}}{=} m_2 k = (x, X_2, ..., x_2 k) = (1, 0, *, *, ..., *)$

$$\sum_{m_{2k}=(1,0,\bullet,\bullet,\bullet,-,\bullet)\in D(m_{2k})} g(m_{2k}) = 1 \times 2^{2k-2} + 2^{2k-3} \times (2k-2) = k \times 2^{2k-2}$$
 12\(\frac{1}{2}\)

②当 m_2 k=(x, x₂, ···, X₂k)=(1, 1, 1, 0, *, *, ···, *) 时,

$$\sum_{m_{2k}=(1,1,1,0,\bullet,\bullet,\bullet,\cdot,\bullet)\in D(m_{2k})} g(m_{2k}) = 3\times 2^{2k-4} + 2^{2k-5}\times (2k-4) = (k+1)\times 2^{2k-4}.$$

$$\sum_{m_{2k}=(1,1,1,1,1,1,0,\bullet,\bullet,\bullet,-1,\bullet)\in D(m_{2k})} g(m_{2k}) = 5 \times 2^{2k-6} + 2^{2k-7} \times (2k-6) = (k+2) \times 2^{2k-6}.$$

$$\sum$$
 8(ma)=(2k-3)×2²+2×2=(2k-2)×2.

⑤ 当 m_2 $k=(x, x_2, \dots, x_2k)=(1, 1, \dots, 1, 0)$ 时,

$$\sum_{m_{2k}=(1,1,\dots,1,0)\in D(m_{2k})} g(m_{2k}) = (2k-3)\times 2^2 + 2\times 2 = (2k-1)\times 1$$

$$= \sum_{i=1}^{k} \left((2k-i) \times 2^{2i-2} \right) = \frac{k}{2} \sum_{i=1}^{k} 4^{i} - \frac{1}{4} \sum_{i=1}^{k} i \cdot 4^{i} = \frac{k}{2} \sum_{i=1}^{k} 4^{i} - \frac{1}{4} \sum_{i=1}^{k} \left(\frac{3(i+1)-4}{9} \cdot 4^{i+1} - \frac{3i-4}{9} \cdot 4^{i} \right)$$

$$= \frac{k}{2} \frac{4 \cdot (1-4^{k})}{1-4} - \frac{1}{4} \left(\frac{3(k+1)-4}{9} \cdot 4^{k+1} - \frac{3-4}{9} \cdot 4 \right) = \frac{(3k+1)4^{k} - (6k+1)}{9} \cdot \cdots \cdots 14 / 2^{k}$$

$$\cdots \cdots 14 / 2^{k}$$

同理, 当n=2k+1 时,

$$b_{2k+1} = \sum_{m_{2k+1} \in D(m_{2k+1})} g(m_{2k+1}) = (2k+1) \times 2^{2k-2} + (2k+3) \times 2^{2k-4} + (2k+5) \times 2^{2k-6}$$

$$\begin{array}{l} +\cdots + (2k+2k-1) \cdot 2^{o} + 2k+1 = \frac{(6k+5)4^{k} + 6k+4}{9} \\ \dot{b}b_{n} = \displaystyle \sum_{m_{n} \in D(m_{n})} g(m_{n}) = \begin{cases} \frac{(3k+1)4^{k} - (6k+1)}{9} & n=2k \\ \frac{(6k+5)4^{k} + 6k+4}{9} & n=2k+1 \end{cases} \\ \dot{b}bb = 828 < 3986 = b_{1}, h_{10} = 1817 < 8643 = h_{2}, \\ \ddot{d}bb = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{b}b + 1 \text{ Rod } \ddot{b}b = 10. \end{cases}$$

$$\begin{array}{l} \text{If } \dot{b}b = 828 < 3986 = b_{1}, h_{10} = 1817 < 8643 = h_{2}, \\ \ddot{d}b = \frac{\sum_{m_{n} \in (1,0,-k^{-1},-k) \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{b}b + 1 \text{ Rod } \ddot{b}b = 10. \end{cases}$$

$$\begin{array}{l} \dot{b}b = \frac{\sum_{m_{n} \in (1,1,1,0,-k^{-1},-k) \in D(m_{n})} g(m_{n}) = 2^{n-2} + (n-2) \times 2^{n-1} = n \times 2^{n-3}. \\ \ddot{d}b = \frac{\sum_{m_{n} \in (1,1,1,1,1,0,-k^{-1},-k) \in D(m_{n})} g(m_{n}) = 3 \times 2^{n-4} + (n-4) \times 2^{n-5} = (n+2) \times 2^{n-5}. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in (1,1,1,1,1,0,-k^{-1},-k) \in D(m_{n})} g(m_{n}) = 5 \times 2^{n-6} + (n-6) \times 2^{n-7} = (n+4) \times 2^{n-7}. \\ \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2025 \text{ Rod } \ddot{d}b = 10. \end{cases}$$

$$\begin{array}{l} \ddot{d}b = \frac{\sum_{m_{n} \in D(m_{n})} g(m_{n}) \leq 2$$

 $\sum_{m_n \in D(m_n)} g(m_n) = 10 \times 2^7 + 12 \times 2^5 + 14 \times 2^3 + 16 \times 2^1 + 9 \times 2^0 = 1817 \le 2025 ,$

···· 17分

所以最大正整数n=10.